Thermodynamic 2D Silicene for Sequential and Multistage Bone Regeneration

Author:

Ni Ni12,Ge Min34,Huang Rui12,Zhang Dandan12,Lin Han3,Ju Yahan12,Tang Zhimin12,Gao Huiqin12,Zhou Huifang12,Chen Yu5,Gu Ping12ORCID

Affiliation:

1. Department of Ophthalmology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 P. R. China

2. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Shanghai 200011 P. R. China

3. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China

4. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

5. Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China

Abstract

AbstractBone healing is a multistage process involving the recruitment of cells, revascularization, and osteogenic differentiation, all of which are modulated in the temporal sequence to maximize cascade bone regeneration. However, insufficient osteoblast cells, poor blood supply, and limited bone induction at the site of critical‐sized bone defect broadly impede bone repair. 2D SiO2‐silicene@2,2′‐,azobis(2‐[2‐imidazolin‐2‐yl] propane) (SNSs@AIPH) with inherent thermodynamic property and osteoinductive activity is therefore designed and engineered for sequentially efficient bone repair. By means of controllable NIR‐II irradiation, the integrated SNSs@AIPH stimulates the generation of appropriate intracellular reactive oxygen species, which accelerates early bone marrow mesenchymal stem cells (BMSCs) proliferation and angiogenesis remarkably. Importantly, as silicon‐based 2D nanoparticles, the engineered SNSs@AIPH with high biocompatibility features distinct bioactivity to significantly promote BMSCs osteogenesis differentiation by activating TGFβ and BMP pathways. In a rat cranial defect model, SNSs@AIPH‐NIR‐II leads to a comparable increase of BMSCs proliferation and local vascularization at an early stage, followed by significant osteogenic differentiation, synergically resulting in a highly effective bone repair. Collectively, the fascinating characteristics and exceptional bone repair efficiency of NIR‐II‐mediated SNSs@AIPH allow it to be a promising bionic‐oriented strategy for bone regeneration, broadening a new perspective in the application of cell‐instructive biomaterials in bone tissue engineering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3