Multiscale Modeling of Magnetoelectric Nanoparticles for the Analysis of Spatially Selective Neural Stimulation

Author:

Kumari Prachi1,Wunderlich Hannah1,Milojkovic Aleksandra1,López Jorge Estudillo1,Fossati Arianna2,Jahanshahi Ali34,Kozielski Kristen156ORCID

Affiliation:

1. Professorship of Neuroengineering Materials School of Computation, Information and Technology Technical University of Munich 80333 Munich Germany

2. Department of Electronics and Information Politecnico di Milano Milano 20133 Italy

3. Department of Neurosurgery Maastricht University Medical Center Maastricht 6229 Netherlands

4. Netherlands Institute for Neuroscience Royal Netherlands Academy of Arts and Sciences Amsterdam 1105 Netherlands

5. Munich Institute of Biomedical Engineering Technical University of Munich 85748 Garching Germany

6. Munich Institute of Robotics and Machine Intelligence Technical University of Munich 80992 Munich Germany

Abstract

AbstractThe growing field of nanoscale neural stimulators offers a potential alternative to larger scale electrodes for brain stimulation. Nanoelectrodes made of magnetoelectric nanoparticles (MENPs) can provide an alternative to invasive electrodes for brain stimulation via magnetic‐to‐electric signal transduction. However, the magnetoelectric effect is a complex phenomenon and challenging to probe experimentally. Consequently, quantifying the stimulation voltage provided by MENPs is difficult, hindering precise regulation and control of neural stimulation and limiting their practical implementation as wireless nanoelectrodes. The work herein develops an approach to determine the stimulation voltage for MENPs in a finite element analysis (FEA) model. This model is informed by atomistic material properties from ab initio Density Functional Theory (DFT) calculations and supplemented by experimentally obtainable nanoscale parameters. This process overcomes the need for experimentally inaccessible characteristics for magnetoelectricity, and offers insights into the effect of the more manageable variables, such as the driving magnetic field. The model's voltage is compared to in vivo experimental data to assess its validity. With this, a predictable and controllable stimulation is simulated by MENPs, computationally substantiating their spatial selectivity. This work proposes a generalizable and accessible method for evaluating the stimulation capability of magnetoelectric nanostructures, facilitating their realization as wireless neural stimulators in the future.

Funder

Michael J. Fox Foundation for Parkinson's Research

Elitenetzwerk Bayern

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3