Tumor Shape‐Specific Brachytherapy Implants by 3D‐Printing, Precision Radioactivity Painting, and Biomedical Imaging

Author:

Lescot Théophraste123,Lebel‐Cormier Marie‐Anne345,Seniwal Baljeet123,Gros‐Louis Philippe236,Bellerive Claudine26,Landreville Solange236,Beaulieu Luc345,Fortin Marc‐André123ORCID

Affiliation:

1. Département de Génie des Mines de la Métallurgie et des Matériaux and Centre de recherche sur les matériaux avancés (CERMA) Université Laval Québec G1V 0A6 Canada

2. Axe Médecine Régénératrice Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec‐Université Laval Québec G1V 4G2 Canada

3. Centre de Recherche sur le Cancer (CRC) de l'Université Laval Québec G1R 3S3 Canada

4. Département de Physique de Génie Physique et d'Optique Université Laval Québec G1V 0A6 Canada

5. Service de physique médicale et radioprotection and Axe Oncologie Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval Québec G1L 3L5 Canada

6. Centre Universitaire d'Ophtalmologie (CUO) and Centre de Recherche du CHU de Québec–Université Laval Hôpital du Saint‐Sacrement Québec G1S 4L8 Canada

Abstract

AbstractIn brachytherapy (BT), or internal radiation therapy, cancer is treated by radioactive implants. For instance, episcleral plaques (EPs) for the treatment of uveal melanoma, are designed according to generic population approximations. However, more personalized implants can enhance treatment precision through better adjustment of dose profiles to the contours of cancerous tissues. An original approach integrating biomedical imaging, 3D printing, radioactivity painting, and biomedical imaging, is developed as a workflow for the development of tumor shape‐specific BT implants. First, computer‐aided design plans of EP are prepared according to guidelines prescribed by the Collaborative Ocular Melanoma Study protocol. Polyetheretherketone (PEEK), a high‐performance polymer suitable for permanent implants, is used to 3D‐print plaques and the geometrical accuracy of the printed design is evaluated by imaging. The possibility to modulate the dose distribution in a tridimensional manner is demonstrated by painting the inner surfaces of the EPs with radioactive 103Pd, followed by dose profile measurements. The possibility to modulate dose distributions generated by these 3D‐printed plaques through radioactivity painting is therefore confirmed. Ex vivo surgical tests on human eyeballs are performed as an assessment of manipulation ease. Overall, this work provides a solution for the fabrication of tumor‐specific radioactive implants requiring higher dose precision.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3