A Biomimetic Lubricating Nanosystem with Responsive Drug Release for Osteoarthritis Synergistic Therapy

Author:

Li Cheng1,Gong Peiwei12ORCID,Chao Mianran1,Li Juan1,Yang Liyan1,Huang Yan3,Wang Dandan1,Liu Jianxi2,Liu Zhe1

Affiliation:

1. The Key Laboratory of Life‐Organic Analysis School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China

2. State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China

3. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China

Abstract

AbstractOsteoarthritis (OA) is associated with lubrication failure of articular cartilage and severe inflammatory response of joint capsule. Synergistic therapy combining joint lubrication and anti‐inflammation emerges as a novel treatment of OA. In this study, bioinspired by ultralow friction of natural articular synovial fluid and mussel adhesion chemistry, a biomimetic nanosystem with dual functions of enhanced lubrication and stimuli‐responsive drug release is developed. A dopamine mediated strategy realizes one step biomimetic grafting of hyaluronic acid (HA) on fluorinated graphene. The polymer modified sheets exhibit highly efficient near‐infrared absorption, and show steady lubrication with a long time under various working conditions, in which the coefficient of friction is reduced by 75% compared to H2O. Diclofenac sodium (DS) with a high loading capacity of 29.2% is controllably loaded, and responsive and sustained drug release is adjusted by near‐infrared light. Cell experiments reveal that the lubricating nanosystem is taken up by endocytosis, and anti‐inflammation results confirm that the nanosystem inhibits osteoarthritis deterioration by upregulating cartilage anabolic gene and downregulating catabolic proteases and pain‐related gene. This work proposes a promising biomimetic approach to integrate polymer modified fluorinated graphene as a dual‐functional nanosystem for effective synergistic therapy of OA.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3