Affiliation:
1. The Key Laboratory of Life‐Organic Analysis School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China
2. State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
3. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
Abstract
AbstractOsteoarthritis (OA) is associated with lubrication failure of articular cartilage and severe inflammatory response of joint capsule. Synergistic therapy combining joint lubrication and anti‐inflammation emerges as a novel treatment of OA. In this study, bioinspired by ultralow friction of natural articular synovial fluid and mussel adhesion chemistry, a biomimetic nanosystem with dual functions of enhanced lubrication and stimuli‐responsive drug release is developed. A dopamine mediated strategy realizes one step biomimetic grafting of hyaluronic acid (HA) on fluorinated graphene. The polymer modified sheets exhibit highly efficient near‐infrared absorption, and show steady lubrication with a long time under various working conditions, in which the coefficient of friction is reduced by 75% compared to H2O. Diclofenac sodium (DS) with a high loading capacity of 29.2% is controllably loaded, and responsive and sustained drug release is adjusted by near‐infrared light. Cell experiments reveal that the lubricating nanosystem is taken up by endocytosis, and anti‐inflammation results confirm that the nanosystem inhibits osteoarthritis deterioration by upregulating cartilage anabolic gene and downregulating catabolic proteases and pain‐related gene. This work proposes a promising biomimetic approach to integrate polymer modified fluorinated graphene as a dual‐functional nanosystem for effective synergistic therapy of OA.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献