Affiliation:
1. Department of Biosystems Engineering Kangwon National University Chuncheon 24341 Republic of Korea
2. Interdisciplinary Program in Smart Agriculture Kangwon National University Chuncheon 24341 Republic of Korea
3. Institute of Forest Science Kangwon National University Chuncheon 24341 Republic of Korea
4. Biomechagen Co., Ltd. Chuncheon 24341 Republic of Korea
Abstract
AbstractBiomimetic soft hydrogels used in bone tissue engineering frequently produce unsatisfactory outcomes. Here, it is investigated how human bone‐marrow‐derived mesenchymal stem cells (hBMSCs) differentiated into early osteoblasts on remarkably soft 3D hydrogel (70 ± 0.00049 Pa). Specifically, hBMSCs seeded onto cellulose nanocrystals incorporated methacrylate gelatin hydrogels are subjected to pulsatile pressure stimulation (PPS) of 5–20 kPa for 7 days. The PPS stimulates cellular processes such as mechanotransduction, cytoskeletal distribution, prohibition of oxidative stress, calcium homeostasis, osteogenic marker gene expression, and osteo‐specific cytokine secretions in hBMSCs on soft substrates. The involvement of Piezo 1 is the main ion channel involved in mechanotransduction. Additionally, RNA‐sequencing results reveal differential gene expression concerning osteogenic differentiation, bone mineralization, ion channel activity, and focal adhesion. These findings suggest a practical and highly scalable method for promoting stem cell commitment to osteogenesis on soft matrices for clinical reconstruction.
Funder
National Research Foundation of Korea
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献