Versatile Mechanically Tunable Hydrogels for Therapeutic Delivery Applications

Author:

Sun Qiyao1ORCID,Tao Siyuan2,Bovone Giovanni3,Han Garam1,Deshmukh Dhananjay34,Tibbitt Mark W.3,Ren Qun2,Bertsch Pascal5,Siqueira Gilberto6,Fischer Peter1ORCID

Affiliation:

1. Department of Health Science and Technology ETH Zurich Zurich 8092 Switzerland

2. Laboratory for Biointerfaces Empa St. Gallen 9014 Switzerland

3. Macromolecular Engineering Laboratory, D‐MAVT ETH Zurich Zurich 8092 Switzerland

4. Institute for Mechanical Systems, D‐MAVT ETH Zurich Zurich 8092 Switzerland

5. Drug Delivery and Biophysics of Biopharmaceuticals Department of Pharmacy University of Copenhagen Copenhagen 2100 Denmark

6. Cellulose & Wood Materials Laboratory EMPA Dübendorf 8600 Switzerland

Abstract

AbstractHydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine‐tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid‐like wound‐healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo‐responsive poly(N‐isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid‐like elastic hydrogel. The liquid hydrogels possess low viscosity and shear‐thinning properties at 25 °C, which allows facile injection at room temperature, while they become viscoelastic gels at body temperature. In contrast, the covalently cross‐linked solid‐like hydrogels exhibit enhanced viscoelasticity. The liquid hydrogels are biocompatible and are able to delay the in vitro release and maintain the bioactivity of model drugs. The antimicrobial agent loaded solid‐like hydrogels are effective against typical wound‐associated pathogens. This work presents a simple method of tuning hydrogel mechanical strength to easily adapt to applications in different soft tissues and broaden the potential of renewable bio‐nanoparticles in hybrid biomaterials with controlled drug release capabilities.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

China Sponsorship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3