Reversion of ACP Nanoparticles into Prenucleation Clusters via Surfactant for Promoting Biomimetic Mineralization: A Physicochemical Understanding of Biosurfactant Role in Biomineralization Process

Author:

Shen Dongni1,Zhou Zihuai1,Xu Yuedan1,Shao Changyu1,Shi Ying1,Zhao Weijia1,Tang Ruikang2,Pan Haihua3,Yu Mengfei1,Hannig Matthias4,Fu Baiping1ORCID

Affiliation:

1. Stomatology Hospital School of Stomatology Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases Key Laboratory of Oral Biomedical Research of Zhejiang Province Cancer Center of Zhejiang University Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province Hangzhou Zhejiang 310000 China

2. Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University Hangzhou Zhejiang Province 310000 China

3. Qiushi Academy for Advanced Studies Zhejiang University Hangzhou Zhejiang Province 310000 China

4. Clinic of Operative Dentistry Periodontology and Preventive Dentistry Saarland University 66424 Homburg Saarland Germany

Abstract

AbstractAmphiphilic biomolecules are abundant in mineralization front of biological hard tissues, which play a vital role in osteogenesis and dental hard tissue formation. Amphiphilic biomolecules function as biosurfactants, however, their biosurfactant role in biomineralization process has never been investigated. This study, for the first time, demonstrates that aggregated amorphous calcium phosphate (ACP) nanoparticles can be reversed into dispersed ultrasmall prenucleation clusters (PNCs) via breakdown and dispersion of the ACP nanoparticles by a surfactant. The reduced surface energy of ACP@TPGS and the electrostatic interaction between calcium ions and the pair electrons on oxygen atoms of C‐O‐C of D‐α‐tocopheryl polyethylene glycol succinate (TPGS) provide driving force for breakdown and dispersion of ACP nanoparticles into ultrasmall PNCs which promote in vitro and in vivo biomimetic mineralization. The ACP@TPGS possesses excellent biocompatibility without any irritations to oral mucosa and dental pulp. This study not only introduces surfactant into biomimetic mineralization field, but also excites attention to the neglected biosurfactant role during biomineralization process.

Funder

National Natural Science Foundation of China

Zhejiang Chinese Medical University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3