Cryptotanshinone‐Doped Photothermal Synergistic MXene@PDA Nanosheets with Antibacterial and Anti‐Inflammatory Properties for Wound Healing

Author:

Li Zongjia12,Wei Wei3,Zhang Miaomiao4,Guo Xinyue12,Zhang Bailin1,Wang Dapeng4,Jiang Xiue12,Liu Fangxin5,Tang Jilin12ORCID

Affiliation:

1. State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China

3. Hospital of Stomatology Jilin University Changchun 130021 P. R. China

4. State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China

5. School of Pharmaceutical Sciences Changchun University of Chinese Medicine Changchun 130117 P. R. China

Abstract

AbstractHumans are threatened by bacteria and other microorganisms, resulting in countless pathogen‐related infections and illnesses. Accumulation of reactive oxygen species (ROS) in infected wounds activates strong inflammatory responses. The overuse of antibiotics has led to increasing bacterial resistance. Therefore, effective ROS scavenging and bactericidal capacity are essential and the advanced development of collaborative therapeutic techniques to combat bacterial infections is needed. Here, this work developes an MXene@polydopamine‐cryptotanshinone (MXene@PDA‐CPT) antibacterial nanosystem with excellent reactive oxygen and nitrogen species scavenging ability, which effectively inactivates drug‐resistant bacteria and biofilms, thereby promoting wound healing. In this system, the adhesion of polydopamine nanoparticles to MXene produced a photothermal synergistic effect and free radical scavenging activity, presenting a promising antibacterial and anti‐inflammatory strategy. This nanosystem causes fatal damage to bacterial membranes. The loading of cryptotanshinone further expanded the advantages of the system, causing a stronger bacterial killing effect and inflammation mitigatory effect with desired biosafety and biocompatibility. In addition, combining nanomaterials and active ingredients of traditional Chinese medicine, this work provides a new rationale for the future development of wound dressings, which contributes to eliminating bacterial resistance, delaying disease deterioration, and alleviating the pain of patients.

Funder

Ministry of Science and Technology

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3