Affiliation:
1. Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225009 P. R. China
2. Department of Orthopedics Affiliated Hospital of Yangzhou University Yangzhou 225012 P. R. China
3. Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 P. R. China
4. Department of Orthopedics Gushi Maternal and Child Health Hospital Xinyang 465200 P. R. China
Abstract
AbstractIntervertebral disc degeneration (IVDD) is invariably accompanied by excessive accumulation of reactive oxygen species (ROS), resulting in progressive deterioration of mitochondrial function and senescence in nucleus pulposus cells (NPCs). Significantly, the main ROS production site in non‐immune cells is mitochondria, suggesting mitochondria is a feasible therapeutic target to reverse IVDD. Triphenylphosphine (TPP), which is known as mitochondrial‐tropic ligands, is utilized to modify carbon dot‐supported Prussian blue (CD‐PB) to scavenge superfluous intro‐cellular ROS and maintain NPCs at normal redox levels. CD‐PB‐TPP can effectively escape from lysosomal phagocytosis, permitting efficient mitochondrial targeting. After strikingly lessening the ROS in mitochondria via exerting antioxidant enzyme‐like activities, such as superoxide dismutase, and catalase, CD‐PB‐TPP rescues damaged mitochondrial function and NPCs from senescence, catabolism, and inflammatory reaction in vitro. Imaging evaluation and tissue morphology assessment in vivo suggest that disc height index, mean grey values of nucleus pulposus tissue, and histological morphology are significantly improved in the IVDD model after CD‐PB‐TPP is locally performed. In conclusion, this study demonstrates that ROS‐induced mitochondrial dysfunction and senescence of NPCs leads to IVDD and the CD‐PB‐TPP possesses enormous potential to rescue this pathological process through efficient removal of ROS via targeting mitochondria, supplying a neoteric strategy for IVDD treatment.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献