Planted species influences soil phosphorus losses in a historically fertilized pasture system: A mesocosm study

Author:

Petticord Daniel F.1ORCID,Boughton Elizabeth H.2ORCID,Li Haoyu2ORCID,Qiu Jiangxiao3ORCID,Saha Amartya2ORCID,Zhi Ran3ORCID,Sparks Jed P.1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology Cornell University Ithaca New York USA

2. Archbold Biological Station Lake Placid Florida USA

3. School of Forest, Fisheries, and Geomatics Sciences, Fort Lauderdale Research and Education Center University of Florida Davie Florida USA

Abstract

AbstractThe gradual accumulation of phosphorus from historical fertilization can contribute to the eutrophication of surface waters by increasing the potential for subsurface leaching losses. Grazing lands areas are a priority for concern, and phytoremediation efforts in grazing lands have prioritized grasses that may be used as forage for cattle. This study investigated the influence of three different forage species—Paspalum notatum, Hemarthria altissima, and Cynodon nlemfuensis—on the loss of phosphorus in leachate from surface soils. The experiment used a nested pot mesocosm design that allowed us to monitor leachate volume and concentration biweekly over the course of 3 months. Pots containing P. notatum plants leached significantly more phosphorus than pots containing C. nlemfuensis or empty pots with no plants growing in them, despite losing an equivalent amount of water. H. altissima lost equivalent amounts of phosphorus in leachate water, but each H. altissima plant removed approximately 33.6 mg of phosphorus, approximately 2.5× that removed by P. notatum (13.4 mg). C. nlemfuensis had lower average leachate phosphorus concentrations at each biweekly sampling than either plant species (C. nlemfuensis‐P. notatum, padj = 0.001; C. nlemfuensis‐H. altissima, padj = 0.02), averaging only 0.110 ppm in leachate relative to 0.175 ppm and 0.200 ppm in pots beneath H. altissima and P. notatum, respectively. This, combined with C. nlemfuensis' slightly higher‐than‐average aboveground P content and overall aboveground biomass expression suggest it is the best possible phytoremediation candidate. As even minor leachate P loads can be critically threatening to neighboring oligotrophic water bodies, if the conservation of downstream environments is the priority, the short‐term threat of increased leachate must be considered. Further research is needed to explore the underlying mechanisms and field‐scale implications of these findings.

Funder

U.S. Department of Agriculture

Florida Department of Agriculture and Consumer Services

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3