A method to classify coal pore system by using cumulative amplitude ratio and its dynamic variation

Author:

Zou Mingjun1,Cai Ningbo23,Wang Keying34,Ding Zibin1,Yao Linlin1

Affiliation:

1. College of Geosciences and Engineering North China University of Water Resources and Electric Power Zhengzhou China

2. China University of Geosciences Wuhan China

3. New Geological Energy Exploration and Development Engineering Technology Research Center of Hunan Changsha China

4. Geophysics and Geochemistry Survey Institute of Hunan Changsha China

Abstract

AbstractAs coal pore development is decisive for choosing the engineering site and predicting the CO2 storage capacity, this paper provides a new method to define the double T2 cutoff values by using cumulative amplitude ratio measured by nuclear magnetic resonance measurements, classifies the coal pore systems, and analyzes the influences on cumulative amplitude ratio. The following cognitions are achieved. The minimum ratio always varies narrowly and ranges from 0.9 to 1.1, which is quite stable and approximately equals to 1. Ranges of maximum and average ratios are 1.2–3.5 and 1.1–1.8, respectively. T2c1 represents the dividing point of diffusion pore and permeation pore, and its average value is about 4.1 ms. T2c2 represents the dividing point of permeation pore and cleat, with an average value of about 81.9 ms. The volumetric proportions of diffusion pore range from 1.5% to 76.2%, with an average value of 34.6%; the volumetric proportions of permeation pore are from 14.9% to 98.5%, with an average of 46.8%; while the volumetric proportions of cleat are between 8.4% and 57.5%, with an average of 26.6%. According to the different influencing degrees on maximum and average ratios, three types of parameters can be divided. The first type is strong correlation parameters and includes permeability, volumetric percentage of cleat, and relative volumetric percentage of cleat. The second type is medium correlation parameters, such as volumetric percentage of diffusion pore. The third type is weak correlation parameters, including T2 cutoff values, porosity, and maximum vitrinite reflectance. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

Publisher

Wiley

Subject

Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3