A neural network potential based on pairwise resolved atomic forces and energies

Author:

Kalayan Jas1ORCID,Ramzan Ismaeel12,Williams Christopher D.1ORCID,Bryce Richard A.1ORCID,Burton Neil A.3ORCID

Affiliation:

1. Division of Pharmacy and Optometry, School of Health Sciences University of Manchester Manchester UK

2. Neural Circuits and Computations Unit RIKEN Center for Brain Science Wako Japan

3. Department of Chemistry University of Manchester Manchester UK

Abstract

AbstractMolecular simulations have become a key tool in molecular and materials design. Machine learning (ML)‐based potential energy functions offer the prospect of simulating complex molecular systems efficiently at quantum chemical accuracy. In previous work, we have introduced the ML‐based PairF‐Net approach to neural network potentials, that adopts a pairwise interatomic scheme to predicting forces within a molecular system. Here, we further develop the PairF‐Net model to intrinsically incorporate energy conservation and couple the model to a molecular mechanical (MM) environment within the OpenMM package. The updated PairF‐Net model yields energy and force predictions and dynamical distributions in good agreement with the rMD17 dataset of ten small organic molecules in the gas‐phase. We further show that these in vacuo ML models of small molecules can be applied to force predictions in aqueous solution via hybrid ML/MM simulations. We present a new benchmark dataset for these ten molecules in solution, obtained from QM/MM simulations, which we denote as rMD17‐aq (https://zenodo.org/records/10048644); and assess the ability of PairF‐Net to reproduce the molecular energy, atomic forces and dynamical distributions of these solution conformations via ML/MM simulations.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3