Novel protein products encoded by upstream open reading frames of the MYCN gene in pediatric embryonal tumors

Author:

Jang Chorong1,Blume Scott W.2,Choi Hyoung Soo1ORCID

Affiliation:

1. Department of Pediatrics, Seoul National University College of Medicine Seoul National University Bundang Hospital Seongnam South Korea

2. Department of Medicine and Comprehensive Cancer Center University of Alabama at Birmingham Birmingham Alabama USA

Abstract

AbstractThe MYCC and MYCN loci are each associated with two upstream open reading frames (uORFs) potentially encoding small proteins (9–21 kDa). We previously demonstrated that uORFs mrtl and MYCHEX1 of MYCC are translated, and their protein products may function to regulate the expression of the “parent” oncogene. We hypothesized that a similar relationship might exist between MYCN and its two uORFs: MYCNOT and MNOP, and investigated the uORF‐encoded proteins associated with MYCN to confirm their expression and intracellular location in neuroblastoma and medulloblastoma cells and tissues. MNOP, MYCNOT, mrtl, and MYCHEX1 were readily detected via reverse transcription polymerase chain reaction and Western blot analysis in tumor cell lines. In tumor tissue, MNOP protein expression was confirmed; however, MCYNOT generated from alternative splicing MYCNΔ1b mRNA was not detected. Immunofluorescence staining of MYCNOT displayed multiple bright foci in the nucleus and diffuse staining in the cytoplasm, suggesting that this small protein may function in both the nucleus and cytoplasm. Upon JQ1 treatment, MYCN, MYCNOT, and mrtl decreased substantially or disappeared completely in three different tumor cell lines. Significant levels of apoptosis were observed in each pediatric embryonal tumor cell line but not T47D breast carcinoma cells, suggesting that response to JQ1 transcriptional inhibition is greatest in tumor cells, which depend on MYC to maintain an undifferentiated phenotype. In conclusion, both MYCN uORF‐encoded proteins MNOP and MYCNOT, together with the two MYCC uORF‐encoded proteins mrtl and MYCHEX1 were detected simultaneously in tumor cell lines and tumor tissues. These four distinct proteins are translated from the “5′‐untranslated region” of MYCN or MYCC mRNA and display consistent distribution patterns within the cell. Additional studies to further elucidate the physiological and pathological roles of these uORF‐encoded proteins are warranted, as insights gained could inform new strategies for modulating MYC‐family oncogenes by targeting their uORFs.

Funder

Seoul National University Bundang Hospital

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3