Effects of stream drying, season, and distance to refuge on macroinvertebrate community structure in an arid intermittent stream basin

Author:

Hollien Kelsey D.1,Gill Brian A.1,Eppehimer Drew E.1,Bogan Michael T.1

Affiliation:

1. School of Natural Resources and the Environment University of Arizona Tucson Arizona USA

Abstract

AbstractIntermittent streams are globally ubiquitous and represent a large percentage of stream networks. As climate change in many arid regions increases the frequency and intensity of drying disturbances, it is important to understand how aquatic biota will respond to such disturbances and how it would impact aquatic biodiversity. To address these topics, we sampled 10 stream reaches in the Sycamore Creek basin, an arid‐land stream in central Arizona (USA), with reach‐scale flow regimes ranging from perennial to highly intermittent. We sampled aquatic macroinvertebrates during 4 seasons to explore seasonal variability in community structure through flowing and drying phases. We also collected continuous flow data with remote data loggers to explore the impacts of intermittency and distance to perennial refuges on species richness, taxonomic composition and trait composition. Overall, richness was lower at intermittent reaches than perennial reaches, and richness values increased linearly as flow duration increased. We found no relationship between richness and distance to the nearest perennial refuge. Community assemblages differed significantly by season but were not distinct between perennial and intermittent reaches. Trait composition was also distinct between seasons and flow regimes, with traits such as a lack of diapause, longer life span and predatory feeding behaviours being indicators for perennial reaches. As climate change alters natural flow regimes, understanding the responses of macroinvertebrate community structure to drying disturbances in arid‐land streams can provide insight on aquatic community responses to climate change at larger scales.

Funder

National Science Foundation

Publisher

Wiley

Subject

Earth-Surface Processes,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3