Specific Glycosaminoglycans Modulate Neural Specification of Mouse Embryonic Stem Cells

Author:

Pickford Claire E.1,Holley Rebecca J.1,Rushton Graham2,Stavridis Marios P.3,Ward Christopher M.4,Merry Catherine L.R.1

Affiliation:

1. Stem Cell Glycobiology Group, School of Materials Science, University of Manchester, Manchester, United Kingdom

2. Theraputic Angiogenesis Group, CRUK Paterson Institute for Cancer Research, University of Manchester, Manchester, United Kingdom

3. Centre for Oncology and Molecular Medicine, Division of Medical Sciences, University of Dundee, Ninewells Hospital, Dundee, United Kingdom

4. Core Technology Facility, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom

Abstract

Abstract Mouse embryonic stem (mES) cells express a low sulfated form of heparan sulfate (HS). HS chains displayed by ES cells and their progeny become more complex and more sulfated during progression from pluripotency to neuroectodermal precursors. Sulfated epitopes are important for recognition and binding of a variety of ligands including members of the fibroblast growth factor (FGF) family. We demonstrated previously that mES cells lacking HS cannot undergo neural specification but this activity can be recovered by adding soluble heparin, a highly sulfated glycosaminoglycan (GAG). Therefore, we hypothesized that soluble GAGs might be used to support neural differentiation of HS competent cells and that the mechanisms underlying this activity might provide useful information about the signaling pathways critical for loss of pluripotency and early lineage commitment. In this study, we demonstrate that specific HS/heparin polysaccharides support formation of Sox1+ neural progenitor cells from wild-type ES cells. This effect is dependent on sulfation pattern, concentration, and length of saccharide. Using a selective inhibitor of FGF signal transduction, we show that heparin modulates signaling events regulating exit from pluripotency and commitment to primitive ectoderm and subsequently neuroectoderm. Interestingly, we were also able to demonstrate that multiple receptor tyrosine kinases were influenced by HS in this system. This suggests roles for additional factors, possibly in cell proliferation or protection from apoptosis, during the process of neural specification. Therefore, we conclude that soluble GAGs or synthetic mimics could be considered as suitable low-cost factors for addition to ES cell differentiation regimes.

Funder

Medical Research Council

Human Frontier Science Program

Biotechnology and Biological Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3