Effect of green synthesized zinc oxide nanoadditives and rice bran oil biodiesel blend on performance and combustion characteristics of a variable compression ratio diesel engine: an experimental study

Author:

Koirala Manish1,Sah Amit Kumar1,Dhakal Rabindra Prasad2,Karn Rupesh Lal1,Khanal Mukunda3,Adhikari Surya Prasad4ORCID

Affiliation:

1. Department of Automobile and Mechanical Engineering, Thapathali Campus Institute of Engineering Kathmandu Nepal

2. Bio‐energy Laboratory, Faculty of Technology Nepal Academy of Science and Technology Lalitpur Nepal

3. Department of Mechanical Engineering Lamar University Beaumont Texas USA

4. Department of Mechanical and Aerospace Engineering, Pulchowk Campus Institute of Engineering Lalitpur Nepal

Abstract

AbstractThe aim of this research was to investigate experimentally the performance and combustion characteristics of a four‐stroke, single‐cylinder, water‐cooled variable compression ratio diesel engine using rice bran oil biodiesel blends with zinc oxide nanoparticles. Rice bran oil biodiesel was prepared using a transesterification reaction with a 6:1 methanol‐oil molar ratio and 1% w/w potassium hydroxide as catalyst. Zinc oxide nanoparticles were synthesized using a green method incorporating Psidium guajava leaf extract as a capping agent to reduce precursor use and to reduce the toxicity of the nanomaterial. The synthesized zinc oxide nanoparticles were characterized by using X‐ray diffraction and Fourier‐transform infrared spectroscopy to confirm the formation of highly crystalline pure zinc oxide nanoparticles with a hexagonal wurtzite crystal structure with an average diameter of 20.963 nm. Rice bran‐oil biodiesel‐diesel blend was prepared by volumetrically mixing 20% biodiesel and 80% mineral diesel and was considered as a base fuel for comparison. Zinc oxide nanoparticles were diffused in the base fuel at dosage levels of 25, 50, and 75 ppm, with the aid of ultrasonication. Measurement of the major physicochemical properties of test fuels showed an increase in the cetane number and calorific value and a reduction in viscosity with an increase in the zinc oxide concentration. The overall properties of all the test fuels were found to be similar in comparison with commercial diesel. An experimental engine test was carried out under different loading conditions with a constant speed of 1500 RPM and two different compression ratios – that is, 17.5:1 and 15:1. Among all the test fuels at both compression ratios, engine performance and combustion properties improved with an increase in the zinc oxide concentration. Test fuel with 75 ppm of zinc oxide additive at 17.5 compression ratio resulted in an overall improvement at full load: brake thermal efficiency increased by 2.45%, brake specific fuel consumption reduced by 5.45%, cylinder peak pressure increased by 3.27% and net heat release increased by 10.32% in comparison with base fuel.

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Bioengineering

Reference41 articles.

1. KnotheG GerpenJHVandKrahlJ The Biodiesel Handbook(2005).

2. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system

3. THE EMISSION EFFECTS BY THE USE OF BIODIESEL FUEL

4. Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission

5. Experimental investigation of rice bran biodiesel with hydrogen enrichment in diesel engine;Kanth S;Energy Sources A Recovery Util Environ Eff,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3