Precision fMRI and cluster‐failure in the individual brain

Author:

Ceja Igor Fabian Tellez12ORCID,Gladytz Thomas1,Starke Ludger1,Tabelow Karsten3ORCID,Niendorf Thoralf14,Reimann Henning Matthias1ORCID

Affiliation:

1. Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.) Berlin Germany

2. Charité—Universitätsmedizin Berlin Berlin Germany

3. Weierstrass Institute for Applied Analysis and Stochastics Berlin Germany

4. Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany

Abstract

AbstractAdvances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal‐to‐noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level‐dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single‐subject analysis. We introduce adaptive‐weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster‐corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole‐brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family‐wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.

Funder

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3