Modeling water flow and volumetric water content in a degraded peat comparing unimodal with bimodal porosity and flux with pressure head boundary condition

Author:

Davies Mariel F.1ORCID,Dietrich Ottfried1ORCID,Gerke Horst H.2,Merz Christoph1

Affiliation:

1. Research Area 2 “Land Use and Governance”, Working Group “Lowland Hydrology and Water Management”, Leibniz‐Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany

2. Research Area 1 “Landscape Functioning", Leibniz‐Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany

Abstract

AbstractDegraded peatlands release large amounts of greenhouse gases. The development of effective mitigation and management measures requires an understanding of relevant site‐specific biogeochemical and hydraulic processes. However, the simulation of water fluxes and vadose zone state variables of degrading peatlands relies on proper process description, parameterization of hydraulic functions, and representation of the boundary conditions. The objective of this study was to analyze the effects of unimodal versus bimodal soil hydraulic functions and pressure head versus flux‐type lower boundary conditions (LBCs) on the calculated hydraulic characteristics of a degraded peat profile. HYDRUS‐1D was used to study the hydraulic flow dynamics parameterized with data from a weighable groundwater lysimeter for the period from May 1 to December 31, 2019. Simulations comparing uni‐ and bimodal hydraulic functions showed only minor differences. Simulations of soil water pressure at a depth of 30 cm using a flux‐type LBC (RMSE: 27 cm, where RMSE is root mean square error) performed better than simulations using a pressure head LBC (RMSE: 48 cm). The pressure head LBC performed better at simulating volumetric water contents in 30‐cm depth than the flux LBC variant (RMSE: 0.05 vs. 0.09 cm3 cm−3). For specific site conditions with a shallow, fluctuating groundwater table and temporary air entrapment, the choice of LBC was important for a more accurate simulation of soil water fluxes and volumetric water content.

Publisher

Wiley

Reference70 articles.

1. SIMULTANEOUS INVERSE ESTIMATION OF SOIL HYDRAULIC AND SOLUTE TRANSPORT PARAMETERS FROM TRANSIENT FIELD EXPERIMENTS: HOMOGENEOUS SOIL

2. Allen R. G. Pereira L. S. Raes D. &Smith M.(1998).Crop evapotranspiration—Guidelines for computing crop water requirements(Irrigation and Drainage Paper no. 56).FAO.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3