Downscaling SMAP soil moisture product in cold and arid region: Incorporating NDSI and BSI into the random forest algorithm

Author:

Gao Mingxing1ORCID,Zhu Kui12,Guo Yanjun3,Han Xuhang1,Li Dongsheng1,Zhang Shujian1

Affiliation:

1. School of Geology and Mining Engineering Xinjiang University Urumqi China

2. School of Resources and Earth Sciences China University of Mining and Technology Xuzhou China

3. Henan Bureau of Hydrology and Water Resources Yellow River Water Conservancy Commission of the Ministry of Water Resources Zhengzhou China

Abstract

AbstractSoil moisture (SM) is a critical element of the hydrological cycle, land surface processes, and surface energy balance. However, the low spatial resolution of commonly used SM products limits the application of SM in agriculture and eco‐hydrology in cold and arid regions. In this study, the normalized difference soil index (NDSI) and bare soil index (BSI) were added to traditional downscaling factors including land surface temperature, normalized difference vegetation index, digital elevation mode, apparent thermal inertia, Albedo, and temperature vegetation dryness index, as they are more strongly correlated with surface SM in the bare soil‐vegetation alternation zone of such region. Using the random forest algorithm, a downscaling model of SM was constructed for such region. The accuracy of the downscaled SM estimates was validated by comparing them with the original SM data collected from May to September 2021, which is the non‐freezing period of the soil. The findings indicate that the newly added NDSI and BSI have good correlation with SM. Incorporating NDSI and BSI to construct the downscaled model enhances the accuracy by over 19% compared to excluding them, while also providing a more comprehensive representation of SM information. NDSI and BSI can be well applied to the downscaled research of SM in the bare soil‐vegetation alternation zone, which is of great value for the study of eco‐hydrology and agricultural drought monitoring in cold and arid regions.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3