Determination of a pedotransfer function for specific air–water interfacial area in sandy soils: A pore network‐informed multigene genetic programming approach

Author:

Mirghafari Rasoul1,Nikooee Ehsan2ORCID,Raoof Amir3,Habibagahi Ghassem2

Affiliation:

1. School of Engineering, Computing and Mathematics Oxford Brookes University Oxford UK

2. Department of Civil and Environmental Engineering Shiraz University Shiraz Iran

3. Department of Earth Sciences Utrecht University Utrecht The Netherlands

Abstract

AbstractUnderstanding specific air–water interfacial area (SAWIA) is essential for characterizing and modeling various phenomena in vadose zone hydrology, such as virus and colloid transport, contaminant dissolution, evaporation, and the hydro‐mechanical behavior of unsaturated soils. Traditional measurement methods, including X‐ray imaging and tracer techniques, often encounter challenges, leading to a scarcity of studies that provide a reliable relationship for SAWIA. Currently, no pedotransfer function in the literature links SAWIA with saturation and suction using readily measurable soil properties such as median grain size and porosity. In this study, we initially developed a pore network model capable of predicting SAWIA by calibrating it with corresponding soil‐water retention curves (SWRCs). We then used these models to compile a comprehensive database of SAWIA for six sandy soils, for which experimental SWRCs were available, covering a range of median grain sizes and porosities. Utilizing this database, we established a pedotransfer function through multigene genetic programming. The accuracy of this function was validated against experimental data not previously used in its training and testing. Our parametric study indicated that increases in either porosity or median particle size led to a decrease in the regions exhibiting higher SAWIA in terms of saturation and suction.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3