Preferential flow of phosphorus and nitrogen under steady‐state saturated conditions

Author:

Malhotra Kritika1ORCID,Lamba Jasmeet1ORCID,Way Thomas R.2,Williams Colleen3,Karthikeyan K. G.3,Budhathoki Suman4ORCID,Prasad Rishi5,Srivastava Puneet6,Zheng Jingyi7

Affiliation:

1. Biosystems Engineering Department Auburn University Auburn Alabama USA

2. USDA‐ARS National Soil Dynamics Lab Auburn Alabama USA

3. Biological Systems Engineering Department University of Wisconsin‐Madison Madison Wisconsin USA

4. Biological Systems Engineering Virginia Tech Blacksburg Virginia USA

5. Crop, Soil, and Environmental Sciences Department Auburn University Auburn Alabama USA

6. College of Agriculture and Natural Resources University of Maryland College Park Maryland USA

7. Department of Mathematics and Statistics Auburn University Auburn Alabama USA

Abstract

AbstractRepeated broiler litter application on agricultural lands can cause nutrient enrichment of subsurface effluent, especially with the existence of preferential flow through soil macropores. Previous studies quantifying soil macropores have not attempted to establish a connection of soil macropore characteristics with the subsurface nutrient (nitrogen [N] and phosphorus [P]) losses, across different topographical locations in the field. This study investigated the effect of broiler litter application and preferential flow on subsurface nutrient transport (N and P) at different topographical positions (upslope, midslope, and downslope) in a no‐till pasture field located in Alabama, USA. Twelve intact soil columns (150 mm id and 500 mm length) were used, and the nutrient leaching measurements from laboratory experiments were linked to soil macropore characteristics quantified using X‐ray computed tomography image analysis and solute transport modeling. Treatments included surface broadcast broiler litter (5 Mg ha−1, on dry basis) and unamended control. Leachates were analyzed for dissolved reactive P (DRP), total P (TP), and nitrate + nitrite‐N (NO3 + NO2–N). The bromide breakthrough curves provided evidence of preferential flow in all columns. Litter application significantly increased leachate P concentrations, and average TP and DRP concentrations were significantly higher in the leachate from upslope columns compared to those at downslope location. The NO3–N concentrations in leachate exceeded the US EPA drinking water standard of 10 mg L−1 in all the treatment columns. The highest flow‐weighted mean concentrations of TP and DRP, at 2.7 and 2.5 mg L−1, respectively, were recorded in the upslope columns. Soil physicochemical properties and nutrient leaching losses varied substantially across topographical positions, indicating a need for variable litter application rates to reduce P build‐up and subsequent leaching in vulnerable locations within the field. The relevance of the effect of topographic position on nutrient leaching found in this study should be further tested by investigating a wider range of slopes and soil types in pastures.

Funder

Alabama Agricultural Experiment Station

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3