Transport, dispersion, and degradation of nonpoint source contaminants during flood‐managed aquifer recharge

Author:

Perzan Zach1ORCID,Maher Kate1ORCID

Affiliation:

1. Earth System Science Stanford University Stanford California USA

Abstract

AbstractIn water‐stressed regions of the world, the inundation of working landscapes to replenish aquifers—known as flood‐managed aquifer recharge (flood‐MAR)—has become a valuable tool for sustainable groundwater management. Due to their diverse land use histories, however, many potential recharge sites host nonpoint source contaminants (such as salts, pesticides, and fertilizers) within the vadose zone that may flush to groundwater during recharge operations. To identify the controls on contaminant migration, we perform stochastic simulations of flood‐MAR through a heterogeneous alluvial aquifer and apply transient particle tracking to evaluate conservative and reactive contaminant transport over 80 years of recharge operations. With semi‐annual recharge events, the water table begins to rise 0.13–1.84 years after the first inundation event while solutes take much longer (11 to 80 years) to transit the 45‐m thick unsaturated zone. We derive a parametric expression for the ratio of celerity (or rate of pressure transmission) to velocity of the flood‐MAR wetting front and show that this simplified expression agrees with values calculated from heterogeneous model simulations. Slow solute velocities (0.25–1.75 m year−1) allow for significant contaminant removal through denitrification, but the contaminant plume experiences minimal dispersion or dilution over this time, reaching the water table as a sharp front. Our results suggest that minimizing groundwater velocity and maximizing groundwater celerity during flood‐MAR should optimize increases in water supply while limiting water quality degradation.

Funder

Stanford Woods Institute for the Environment

Division of Graduate Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3