TOPCon shingle solar cells: Thermal laser separation and passivated edge technology

Author:

Lohmüller Elmar1ORCID,Baliozian Puzant12ORCID,Gutmann Leon1ORCID,Kniffki Leander1ORCID,Richter Armin1ORCID,Wang Lili3ORCID,Dunbar Ricky3ORCID,Lepert Arnaud3,Huyeng Jonas D.1ORCID,Preu Ralf1ORCID

Affiliation:

1. Fraunhofer Institute for Solar Energy Systems ISE Heidenhofstraße 2 Freiburg 79110 Germany

2. now with VDMA Photovoltaic Equipment Lyoner Str. 18 Frankfurt am Main 60528 Germany

3. The Solaria Corporation 45700 Northport Loop E Fremont CA 94538 USA

Abstract

AbstractThis work shows the first demonstration of thermal laser separation (TLS) and post‐metallization passivated edge technology (PET) applied to tunnel‐oxide passivated contact (TOPCon) shingle solar cells. The shingle solar cells with 26.46 mm × 158.75 mm size are separated from industrial full‐square TOPCon host solar cells. The singulation is performed either by TLS from the front side (emitter side) or by conventional laser scribe and mechanical cleaving (LSMC) from the rear side (emitter‐free side). The TLS optimized in this work yields up to 0.2%abs more efficient shingle cells after separation in comparison with LSMC‐separated shingle cells. The most promising PET sequence identified for the singulated TOPCon cells consists of depositing an 8‐nm‐thin aluminum oxide layer by thermal atomic layer deposition at a temperature below 200°C in conjunction with subsequent hotplate annealing at 250°C. Application of the PET yields a boost of up to 0.5%abs in energy conversion efficiency for edge‐passivated TOPCon shingle cells in comparison with their performance directly after separation. This efficiency‐increasing impact of the PET sequence is found not to be strongly dependent on the separation process applied. The most efficient TOPCon shingle cell after PET achieves an efficiency of 22.0% and has been singulated by TLS.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference32 articles.

1. StenzelF LeeBG CieslakJ SchwabedissenA WissenD GeißlerS RudolphT Faulwetter‐QuandtB HönigR WasmerS BakowskieR BußD FertigF SchaperM MetteA MüllerJW.Exceeding 23% and mass production of p‐Cz Q.ANTUM bifacial solar cells. In:36th EU PVSEC;2019:96–99.

2. BaliozianP TepnerS FischerM TrubeJ HerritschS GensowskiK ClementF NoldS PreuR.The International Technology Roadmap for Photovoltaics and the significance of its decade‐long projections. In:37th EU PVSEC;2020:420–426.

3. DicksonDC.Photovoltaic semiconductor apparatus or the like. US patent: 2 938 938;1956 4998 938 doi:10.1136/bmj.2.4998.938.

4. GlunzSW DickerJ EsterleM HermleM IsenbergJ KamerewerdFJ KnoblochJ KrayD LeimenstollA LutzF OsswaldD PreuR ReinS SchafferE SchetterC SchmidhuberH SchmidtH SteuderM VorgrimlerC WillekeG.High‐efficiency silicon solar cells for low‐illumination applications. In:29th IEEE;2002:450–453.

5. ToniniD CellereG BertazzoM FecchioA CerastiL GaliazzoM.Shingling technology for cell interconnection: technological aspects and process integration. In:33rd EU PVSEC;2017:38–41.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3