When the Ferrocene Analogy Breaks Down: Metallocene Transmetallation Chemistry

Author:

Raviprolu Varun Tej1,Farias Phillip1,Carta Veronica1,Harman Hill1,Lavallo Vincent1ORCID

Affiliation:

1. Department of Chemistry University of California Riverside CA 92521 USA

Abstract

AbstractFerrocene 1 and its dianionic Fe(bis)(dicarbollide) analogue 2 are classical compounds that display unusual stability. These compounds are not known to undergo transmetallation chemistry of the Fe‐center and have been used extensively as chemical building blocks with consistent integrity. In this manuscript we describe the preparation of a charge compensated Fe(bis)(dicarbollide) species 3 Fe and its unprecedented transmetallation chemistry to Ir. Such reactions are hitherto unknown for any transition metal metallocene or metallacarborane complex. Additionally, we show that 3 Fe can be deprotonated to afford the corresponding bis(NHC) Li‐carbenoid 5 that also displays unique reactivity. When 5 is reacted with [Ir(COD)Cl]2 it also undergoes a rapid transmetallation of the ferrocene “like” core to afford 6 but with the added twist that the Li‐carbenoid moiety stays intact and does not transmetalate. However, when 6 is subsequently treated with CuCl, the Li‐carbenoid transmetalates to Cu, which allows the controlled formation of the corresponding heterobimetallic Ir/Cu aggregate. Lastly, when Li‐carbenoid 5 is treated directly with CuCl, a double transmetallation occurs from both Fe to Cu and Li‐carbenoid to Cu, resulting in the trimetallic Cu cluster 8. These novel reactions pave the way for new synthetic methods to build complicated polymetallic clusters in a controlled fashion.

Funder

Division of Chemistry

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3