Intrarenal pH‐Responsive Self‐Assembly of Luminescent Gold Nanoparticles for Diagnosis of Early Kidney Injury

Author:

Zhao Zhipeng1,He Kui1,Liu Ben1,Nie Wenyan1,Luo Xiaoxi1,Liu Jinbin1ORCID

Affiliation:

1. State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China

Abstract

AbstractMetabolic acidosis‐induced kidney injury (MAKI) is asymptomatic and lack of clinical biomarkers in early stage, but rapidly progresses to severe renal fibrosis and ultimately results in end‐stage kidney failure. Therefore, developing rapid and noninvasive strategies direct responsive to renal tubular acidic microenvironment rather than delayed biomarkers are essential for timely renoprotective interventions. Herein, we develop pH‐responsive luminescent gold nanoparticles (p‐AuNPs) in the second near‐infrared emission co‐coated with 2,3‐dimethylaleic anhydride conjugated β‐mercaptoethylamine and cationic 2‐diethylaminoethanethiol hydrochloride, which showed sensitive pH‐induced charge reversal and intrarenal self‐assembly for highly sensitive and long‐time (~24 h) imaging of different stages of MAKI. By integrating advantages of pH‐induced intrarenal self‐assembly and enhanced interactions between pH‐triggered positively charged p‐AuNPs and renal tubular cells, the early‐ and late‐stage MAKI could be differentiated rapidly within 10 min post‐injection (p.i.) with contrast index (CI) of 3.5 and 4.3, respectively. The corresponding maximum CI could reach 5.1 and 9.2 at 12 h p.i., respectively. Furthermore, p‐AuNPs were demonstrated to effectively real‐time monitor progressive recovery of kidney injury in MAKI mice after therapy, and also exhibit outstanding capabilities for drug screening. This pH‐responsive strategy showed great promise for feedback on kidney dysfunction progression, opening new possibilities for early‐stage diagnosis of pH‐related diseases.

Funder

State Key Laboratory of Pulp and Paper Engineering

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3