Light Enables the Cathodic Interface Reaction Reversibility in Solid‐State Lithium‐Oxygen Batteries

Author:

Ren Liping1,Zheng Ming1,Kong Fanpeng1,Yu Zhenjiang1,Sun Nan1,Li Menglu1,Liu Qingsong12,Song Yajie12,Dong Jidong1,Qiao Jinli3,Xu Nengneng3,Wang Jian4,Lou Shuaifeng1,Jiang Zaixing1,Wang Jiajun12ORCID

Affiliation:

1. State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering Harbin Institute of Technology Harbin⋅ 150001 China

2. Chongqing Research Institute of HIT Chongqing 401135 P. R. China

3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering Donghua University 2999 Renmin North Road Shanghai 201620 China

4. Canadian Light Source Inc. University of Saskatchewan Saskatoon SK S7N 2V3 Canada

Abstract

AbstractLimited triple‐phase boundaries arising from the accumulation of solid discharge product(s) in solid‐state cathodes (SSCs) pose a challenge to high‐property solid‐state lithium‐oxygen batteries (SSLOBs). Light‐assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner‐sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light‐induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge–charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory‐to‐practical applications in sunlight‐induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Canadian Light Source

Government of Saskatchewan

University of Saskatchewan

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emerging Advanced Photo‐Rechargeable Batteries;Advanced Functional Materials;2024-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3