Ultrarapid Nanomanufacturing of High‐Quality Bimetallic Anode Library toward Stable Potassium‐Ion Storage

Author:

Dou Shuming12,Xu Jie23,Zhang Danfeng4,Liu Wen4,Zeng Cuihua2,Zhang Jiangchao2,Liu Zhedong2,Wang Haoqiang1,Liu Yani1,Wang Yu1,He Yanbing4,Liu Wei‐Di5,Gan Wei6,Chen Yanan2ORCID,Yuan Qunhui1

Affiliation:

1. Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China

2. School of Materials Science and Engineering Key Laboratory of Advanced Ceramics Machining Technology of Ministry of Education Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300072 China

3. State Key Laboratory of Mechanical Transmission College of Materials Science and Engineering Chongqing University Chongqing 400044 China

4. Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

5. Australian institute of Bioengineering and Nanotechnology The University of Queensland St. Lucia, Brisbane Queensland 4072 Australia

6. Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China

Abstract

AbstractBimetallic alloy nanomaterials are promising anode materials for potassium‐ion batteries (KIBs) due to their high electrochemical performance. The most well‐adopted fabrication method for bimetallic alloy nanomaterials is tube furnace annealing (TFA) synthesis, which can hardly satisfy the trade‐off among granularity, dispersity and grain coarsening due to mutual constraints. Herein, we report a facile, scalable and ultrafast high‐temperature radiation (HTR) method for the fabrication of a library of ultrafine bimetallic alloys with narrow size distribution (≈10–20 nm), uniform dispersion and high loading. The metal‐anchor containing heteroatoms (i.e., O and N), ultrarapid heating/cooling rate (≈103 K s−1) and super‐short heating duration (several seconds) synergistically contribute to the successful synthesis of small‐sized alloy anodes. As a proof‐of‐concept demonstration, the as‐prepared BiSb‐HTR anode shows ultrahigh stability indicated by negligible degradation after 800 cycles. The in situ X‐ray diffraction reveals the K+ storage mechanism of BiSb‐HTR. This study can shed light on the new, rapid and scalable nanomanufacturing of high‐quality bimetallic alloys toward extended applications of energy storage, energy conversion and electrocatalysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3