Structural Distortion in the Wadsley‐Roth Niobium Molybdenum Oxide Phase Triggering Extraordinarily Stable Battery Performance

Author:

Wu Zhibin12,Liang Gemeng3,Kong Pang Wei2,Zou Jinshuo3,Zhang Wenchao2,Chen Libao1,Ji Xiaobo14,Didier Christophe25,Peterson Vanessa K.25,Segre Carlo U.6,Johannessen Bernt7,Guo Zaiping32ORCID

Affiliation:

1. State Key Laboratory for Powder Metallurgy Central South University Changsha 410083 China

2. Institute for Superconducting & Electronic Materials School of Mechanical, Materials, Mechatronic and Biomedical Engineering University of Wollongong Wollongong NSW 2522 Australia

3. School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australia

4. College of Chemistry and Chemical Engineering Central South University Changsha 410083 China

5. Australian Centre for Neutron Scattering Australian Nuclear Science and Technology Organisation Sydney NSW 2234 Australia

6. Department of Physics and Center for Synchrotron Radiation Research and Instrumentation Illinois Institute of Technology Chicago IL 60616 USA

7. Australian Synchrotron 800 Blackburn Rd Clayton VIC 3168 Australia

Abstract

AbstractWadsley‐Roth niobium oxide phases have attracted extensive research interest recently as promising battery anodes. We have synthesized the niobium‐molybdenum oxide shear phase (Nb, Mo)13O33 with superior electrochemical Li‐ion storage performance, including an ultralong cycling lifespan of at least 15000 cycles. During electrochemical cycling, a reversible single‐phase solid‐solution reaction with lithiated intermediate solid solutions is demonstrated using in situ X‐ray diffraction, with the valence and short‐range structural changes of the electrode probed by in situ Nb and Mo K‐edge X‐ray absorption spectroscopy. This work reveals that the superior stability of niobium molybdenum oxides is underpinned by changes in octahedral distortion during electrochemical reactions, and we report an in‐depth understanding of how this stabilizes the oxide structure during cycling with implications for future long‐life battery material design.

Funder

Australian Research Council

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3