Affiliation:
1. School of Physics and Optoelectronics South China University of Technology 510640 Guangzhou China
2. International School of Microelectronics Dongguan University of Technology 523808 Dongguan Guangdong China
Abstract
AbstractThe interface of perovskite solar cells (PSCs) plays an important role in transferring and collecting charges. Interface defects are important factors affecting the efficiency and stability of PSCs. Here, the buried interface between SnO2 and the perovskite layer is bridged by two‐dimensional (2D) MBene, which improves charge transfer. MBene can deposit additional electrons on the surface of SnO2, passivate its surface defects and facilitate the charge collection. Moreover, the dipole moment formed at the interface increases the electron transfer ability in the PSCs. MBene also regulates the growth of perovskite crystals, improves the quality of perovskite films, and reduces its grain boundary defects. As a result, PSCs based on FA0.2MA0.8PbI3 and (FAPbI3)0.95(MAPbBr3)0.05 get the enhanced efficiencies of 22.34 % and 24.32 % with negligible hysteresis. Furthermore, the optimized device exhibits better stability. This work opens up the application of MBene materials in PSCs, reveals a deeper understanding of the mechanism behind using 2D materials as an interface modification layer, and shows opportunities for using MBene as potential material in photoelectric devices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献