Affiliation:
1. National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology Xi'an Jiaotong University Innovation Harbour, Xi-xian New District Xi'an 712-000 China
2. Institute of Chemical Engineering and Technology Xi'an Jiaotong University Innovation Harbour Xi-xian New District Xi'an 712-000 China
3. School of Future Technology Xi'an Jiaotong University Innovation Harbour Xi-xian New District Xi'an 712-000 China
Abstract
AbstractThe high‐entropy‐alloy (HEA) nanoparticles with four, five or more metals significantly can yield the developments of functional materials with excellent performances in various reactions. However, the underlying reaction mechanisms of heterogeneous catalysis for HEA have been rarely investigated, due to their diverse elements and complex compositions. In this study, we successfully synthesized the homogeneously dispersed Ru−Rh−Pd−Pt HEA with adjustable compositions, as the multiple‐atom‐site catalysts (MASC). In the NOx reduction performance tests, Ru0.4 (Rh0.33Pd0.33Pt0.33)0.6 MASC showed the highest activity, which was significantly improved compared to that of the best monometal Rh, with the light‐off temperature decreasing by ca. 50 °C. The Fourier transform infrared measurements revealed that the outstanding activity of Ru−Rh−Pd−Pt MASC was attributable to the well‐coupled elementary steps of the CO adsorption, NO adsorption, NO dissociation and O spillover on the Ru, Rh, Rh−Pd and Pt sites, respectively, which explained the first clear reaction mechanism in heterogeneous catalysis for HEA.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献