Affiliation:
1. Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University Nanjing 211189 P. R. China
2. Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
Abstract
AbstractThe ability to generate and manipulate photoluminescence (PL) behavior has been of primary importance for applications in information security. Excavating novel optical effects to create more possibilities for information encoding has become a continuous challenge. Herein, we present an unprecedented PL temporary quenching that highly couples with thermodynamic phase transition in a hybrid crystal (DMML)2MnBr4 (DMML=N,N‐dimethylmorpholinium). Such unusual PL behavior originates from the anomalous variation of [MnBr4]2− tetrahedrons that leads to non‐radiation recombination near the phase transition temperature of 340 K. Remarkably, the suitable detectable temperature, narrow response window, high sensitivity, and good cyclability of this PL temporary quenching will endow encryption applications with high concealment, operational flexibility, durability, and commercial popularization. Profited from these attributes, a fire‐new optical encryption model is devised to demonstrate high confidential information security. This unprecedented optical effect would provide new insights and paradigms for the development of luminescent materials to enlighten future information encryption.
Funder
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献