Multidimensional Electrochemistry Decodes the Operando Mechanism of Hydrogen Oxidation

Author:

Yang Kaicong1,Ma Hualong1,Ren Renjie1,Xiao Li1,Jiang Wenyong1,Xie Yu1,Wang Gongwei1,Lu Juntao1,Zhuang Lin1ORCID

Affiliation:

1. College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China

Abstract

AbstractBeing an efficient approach to the utilization of hydrogen energy, the hydrogen oxidation reaction (HOR) is of particular significance in the current carbon‐neutrality time. Yet the mechanistic picture of the HOR is still blurred, mostly because the elemental steps of this reaction are rapid and highly entangled, especially when deviating from the thermodynamic equilibrium state. Here we report a strategy for decoding the HOR mechanism under operando conditions. In addition to the wide‐potential‐range I–V curves obtained using gas diffusion electrodes, we have applied the AC impedance spectroscopy to provide independent and complementary kinetic information. Combining multidimensional data sources has enabled us to fit, in mathematical rigor, the core kinetic parameter set in a 5‐D data space. The reaction rate of the three elemental steps (Tafel, Heyrovsky, and Volmer reactions), as a function of the overpotential, can thus be distilled individually. Such an undocumented kinetic picture unravels, in detail, how the HOR is controlled by the elemental steps on polarization. For instance, at low polarization region, the Heyrovsky reaction is relatively slow and can be ignored; but at high polarization region, the Heyrovsky reaction will surpass the Tafel reaction. Additionally, the Volmer reaction has been the fastest within overpotentials of interest. Our findings not only offer a better understanding of the HOR mechanism, but also lay the foundation for the development of improved hydrogen energy utilization systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3