Dual‐Locked Fluorescent Probes Activated by Aminopeptidase N and the Tumor Redox Environment for High‐Precision Imaging of Tumor Boundaries

Author:

Shen Yang1,Li Wei12,Zhou Zhixuan1,Xu Junchao1,Li Yuhang3,Li Haiyan1,Zheng Xudong1,Liu Sulai3,Zhang Xiao‐Bing1,Yuan Lin1ORCID

Affiliation:

1. State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China

2. School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. China

3. Department of Hepatobiliary Surgery/ Central Laboratory Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University) Changsha 410005 P. R. China

Abstract

AbstractClear delineation of tumor margins is essential for accurate resection and decreased recurrence rate in the clinic. Fluorescence imaging is emerging as a promising alternative to traditional visual inspection by surgeons for intraoperative imaging. However, traditional probes lack accuracy in tumor diagnosis, making it difficult to depict tumor boundaries accurately. Herein, we proposed an offensive and defensive integration (ODI) strategy based on the “attack systems (invasive peptidase) and defense systems (reductive microenvironment)” of multi‐dimensional tumor characteristics to design activatable fluorescent probes for imaging tumor boundaries precisely. Screened out from a series of ODI strategy‐based probes, ANQ performed better than traditional probes based on tumor unilateral correlation by distinguishing between tumor cells and normal cells and minimizing false‐positive signals from living metabolic organs. To further improve the signal‐to‐background ratio in vivo, derivatized FANQ, was prepared and successfully applied to distinguish orthotopic hepatocellular carcinoma tissues from adjacent tissues in mice models and clinical samples. This work highlights an innovative strategy to develop activatable probes for rapid diagnosis of tumors and high‐precision imaging of tumor boundaries, providing more efficient tools for future clinical applications in intraoperative assisted resection.

Funder

National Natural Science Foundation of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3