Regulation of Multiple Resonance Delayed Fluorescence via Through‐Space Charge Transfer Excited State towards High‐Efficiency and Stable Narrowband Electroluminescence

Author:

Luo Sai1,Wang Junjie1,Li Nengquan1,Song Xiu‐Fang1,Wan Xintong1,Li Kai1ORCID,Yang Chuluo1ORCID

Affiliation:

1. Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University 518055 Shenzhen P. R. China

Abstract

AbstractB‐ and N‐embedded multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters usually suffer from slow reverse intersystem crossing (RISC) process and aggregation‐caused emission quenching. Here, we report the design of a sandwich structure by placing the B−N MR core between two electron‐donating moieties, inducing through‐space charge transfer (TSCT) states. The proper adjusting of the energy levels brings about a 10‐fold higher RISC rate in comparison with the parent B−N molecule. In the meantime, a high photoluminescence quantum yield of 91 % and a good color purity were maintained. Organic light‐emitting diodes based on the new MR emitter achieved a maximum external quantum efficiency of 31.7 % and small roll‐offs at high brightness. High device efficiencies were also obtained for a wide range of doping concentrations of up to 20 wt % thanks to the steric shielding of the B−N core. A good operational stability with LT95 of 85.2 h has also been revealed. The dual steric and electronic effects resulting from the introduction of a TSCT state offer an effective molecular design to address the critical challenges of MR‐TADF emitters.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Science, Technology and Innovation Commission of Shenzhen Municipality

Guangdong Provincial Department of Science and Technology

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3