Bio‐inspired Double Angstrom‐Scale Confinement in Ti‐deficient Ti0.87O2 Nanosheet Membranes for Ultrahigh‐performance Osmotic Power Generation

Author:

Liu Chao1,Ye Caichao2,Zhang Tianning1,Tang Jiheng1,Mao Kunpeng1,Chen Long1,Xue Liang1,Sun Jingwen1,Zhang Wenqing2,Wang Xin1,Xiong Pan1ORCID,Wang Guoxiu3ORCID,Zhu Junwu1ORCID

Affiliation:

1. Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 China

2. Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering Guangdong Provincial Key Laboratory of Computational Science and Material Design Southern University of Science and Technology Shenzhen 518055 China

3. Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Sydney NSW 2007 Australia

Abstract

AbstractOsmotic power, a clean energy source, can be harvested from the salinity difference between seawater and river water. However, the output power densities are hampered by the trade‐off between ion selectivity and ion permeability. Here we propose an effective strategy of double angstrom‐scale confinement (DAC) to design ion‐permselective channels with enhanced ion selectivity and permeability simultaneously. The fabricated DAC‐Ti0.87O2 membranes possess both Ti atomic vacancies and an interlayer free spacing of ≈2.2 Å, which not only generates a profitable confinement effect for Na+ ions to enable high ion selectivity but also induces a strong interaction with Na+ ions to benefit high ion permeability. Consequently, when applied to osmotic power generation, the DAC‐Ti0.87O2 membranes achieved an ultrahigh power density of 17.8 W m−2 by mixing 0.5/0.01 M NaCl solution and up to 114.2 W m−2 with a 500‐fold salinity gradient, far exceeding all the reported macroscopic‐scale membranes. This work highlights the potential of the construction of DAC ion‐permselective channels for two‐dimensional materials in high‐performance nanofluidic energy systems.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Natural Science Foundation of China

Australian Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3