Tuning C1/C2 Selectivity of CO2 Electrochemical Reduction over in‐Situ Evolved CuO/SnO2 Heterostructure

Author:

Wang Min1,Chen Huimin1,Wang Min2,Wang Jinxiu1,Tuo Yongxiao3,Li Wenzhen4,Zhou Shanshan1,Kong Linghui1,Liu Guangbo1,Jiang Luhua1ORCID,Wang Guoxiong5

Affiliation:

1. Nanomaterials and Electrocatalysis Laboratory College of Materials Science and Engineering Qingdao University of Science and Technology 53 Zhengzhou Road Qingdao 266042 P. R. China

2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China

3. State Key Laboratory of Heavy Oil Processing College of New Energy China University of Petroleum (East China) Qingdao Shandong 266580 P. R. China

4. Department of Chemical & Biological Engineering Iowa State University Ames IA 50011-1098 USA

5. State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China

Abstract

AbstractHeterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2‐x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2‐x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3