Reduction of Platinum(IV) Prodrug Hemoglobin Nanoparticles with Deeply Penetrating Ultrasound Radiation for Tumor‐Targeted Therapeutically Enhanced Anticancer Therapy

Author:

Liang Ganghao12,Sadhukhan Tumpa3,Banerjee Samya4,Tang Dongsheng12,Zhang Hanchen12,Cui Minhui12,Montesdeoca Nicolás5,Karges Johannes5ORCID,Xiao Haihua12

Affiliation:

1. Beijing National Laboratory for Molecular Sciences Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India

4. Department of Chemistry Indian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India

5. Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstrasse 150 44780 Bochum Germany

Abstract

AbstractThe development of PtIV prodrugs that are reduced into the therapeutically active PtII species within the tumor microenvironment has received much research interest. In order to provide spatial and temporal control over the treatment, there is a high demand for the development of compounds that could be selectively activated upon irradiation. Despite recent progress, the majority of PtIV complexes are excited with ultraviolet or blue light, limiting the use of such compounds to superficial application. To overcome this limitation, herein, the first example of PtIV prodrug nanoparticles that could be reduced with deeply penetrating ultrasound radiation is reported, enabling the treatment of deep‐seated or large tumors. The nanoparticles were found to selectively accumulate inside a mouse colon carcinoma tumor upon intravenous injection and were able to eradicate the tumor upon exposure to ultrasound radiation.

Funder

National Natural Science Foundation of China

Verband der Chemischen Industrie

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3