Affiliation:
1. Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
2. New York University—East China Normal University Center for Computational Chemistry New York University Shanghai Shanghai 200062 China
Abstract
AbstractFunctional porous coating on zinc electrode is emerging as a powerful ionic sieve to suppress dendrite growth and side reactions, thereby improving highly reversible aqueous zinc ion batteries. However, the ultrafast charge rate is limited by the substantial cation transmission strongly associated with dehydration efficiency. Here, we unveil the entire dynamic process of solvated Zn2+ ions’ continuous dehydration from electrolyte across the MOF‐electrolyte interface into channels with the aid of molecular simulations, taking zeolitic imidazolate framework ZIF‐7 as proof‐of‐concept. The moderate concentration of 2 M ZnSO4 electrolyte being advantageous over other concentrations possesses the homogeneous water‐mediated ion pairing distribution, resulting in the lowest dehydration energy, which elucidates the molecular mechanism underlying such concentration adopted by numerous experimental studies. Furthermore, we show that modifying linkers on the ZIF‐7 surface with hydrophilic groups such as −OH or −NH2 can weaken the solvation shell of Zn2+ ions to lower the dehydration free energy by approximately 1 eV, and may improve the electrical conductivity of MOF. These results shed light on the ions delivery mechanism and pave way to achieve long‐term stable zinc anodes at high capacities through atomic‐scale modification of functional porous materials.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Shanghai Municipality
Subject
General Chemistry,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献