Operando Mobile Catalysis for Reverse Water Gas Shift Reaction

Author:

Liang Haojie123,Zhang Bin12ORCID,Hong Mei12,Yang Xinchun12,Zhu Ling12,Liu Xingchen1,Qi Yuntao12,Zhao Shichao1,Wang Guofu1,van Bavel Alexander P.4,Wen Xiaodong1,Qin Yong12

Affiliation:

1. State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences 030001 Taiyuan China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 100049 Beijing China

3. Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education Taiyuan University of Technology 030024 Taiyuan China

4. Shell Global Solutions International B. V., < postCode/>1031 Amsterdam The Netherlands

Abstract

AbstractMetal atoms on the support serve as active sites for many heterogeneous catalysts. However, the active metal sites on the support are conventionally described as static, and the intermediates adsorbed on the support far away from the active metal sites cannot be transformed. Herein, we report the first example of operando mobile catalysis to promote catalytic efficiency by enhancing the collision probability between active sites and reactants or reaction intermediates. Specifically, ligand‐coordinated Pt single atoms (isolated MeCpPt‐ species) are bonded on CeO2 and transformed into mobile MeCpPt(H)CO complexes during the reverse water gas shift reaction for operando mobile catalysis. This strategy enables the conversion of inert carbonate intermediates on the CeO2 support. A turnover frequency (TOF) of 6358 mol CO2 molPt−1 ⋅ h−1 and 99 % CO selectivity at 300 °C is obtained for reverse water gas shift reaction, dramatically higher than those of Pt catalysts reported in the literature. Operando mobile catalysis presents a promising strategy for designing high‐efficiency heterogeneous catalysts for various chemical reactions and applications.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Shanxi Provincial Key Research and Development Project

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3