Highly Efficient Self‐Assembly of Metallacages and Their Supramolecular Catalysis Behaviors in Microdroplets

Author:

Lin Hong‐Yu1,Zhou Le‐Yong1,Mei Fang1,Dou Wei‐Tao1,Hu Lianrui1,Yang Hai‐Bo1,Xu Lin1ORCID

Affiliation:

1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Frontiers Science Center of Molecule Intelligent Syntheses School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China

Abstract

AbstractDeveloping a new strategy to improve the self‐assembly efficiency of functional assemblies in a confined space and construct hybrid functional materials is a significant and fascinating endeavor. Herein, we present a highly efficient strategy for achieving the supramolecular self‐assembly of well‐defined metallacages in microdroplets through continuous‐flow microfluidic devices. The high efficiency and versatility of this approach are demonstrated by the generation of five representative metallacages in different solvents containing water, DMF, acetonitrile, and methanol in a few minutes with nearly quantitative yields, in contrast to the yields obtained with the hour‐scale reaction time in a batch reactor. A ring‐opening catalytic reaction of the metallacages was selected as a model reaction for exploring supramolecular catalysis in microdroplets, whereby the catalytic yield was enhanced by 2.22‐fold compared to that of the same reaction in the batch reactor. This work illustrates a new promising approach for the self‐assembly of supramolecular systems.

Funder

Key Technology Research and Development Program of Shandong

National Natural Science Foundation of China

Program of Shanghai Academic Research Leader

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3