Oxide‐Encapsulated Silver Electrocatalysts for Selective and Stable Syngas Production from Reactive Carbon Capture Solutions

Author:

Lin Zhexi1ORCID,Blake Nathaniel1,Pang Xueqi1ORCID,He Zhirui1,Mirshekari Gholamreza2ORCID,Romiluyi Oyinkansola2ORCID,Son Yoon Jun2ORCID,Kabra Suryansh1,Esposito Daniel V.1ORCID

Affiliation:

1. Department of Chemical Engineering Columbia University in the City of New York Columbia Electrochemical Energy Center Lenfest Center for Sustainable Energy 500 West 120th Street 10027 New York NY USA

2. Shell International Exploration & Production, Inc. 3333 Highway 6 South 77082 Houston TX USA

Abstract

AbstractElectrolysis of bicarbonate‐containing CO2 capture solutions is a promising approach towards achieving low‐cost carbon‐neutral chemicals production. However, the parasitic bicarbonate‐mediated hydrogen evolution reaction (HER) and electrode instability in the presence of trace impurities remain major obstacles to overcome. This work demonstrates that the combined use of titanium dioxide (TiO2) overlayers with the chelating agent ethylene diamine tetra‐acetic acid (EDTA) significantly enhances the selectivity and stability of Ag‐based electrocatalysts for bicarbonate electrolysis. The amorphous TiO2 overlayers suppress the HER by over 50 % at potentials more negative than −0.7 V vs. RHE, increasing the CO faradaic efficiency (FE) by 33 % (relative). In situ surface‐enhanced Raman spectroscopy (SERS) measurements reveal the absence of near‐surface bicarbonate species and an abundance of CO2 reduction intermediates at the Ag|TiO2 buried interface, suggesting that the overlayers suppress HER by blocking bicarbonate ions from reaching the buried active sites. In accelerated degradation tests with 5 ppm of Fe(III) impurity, the addition of EDTA allows stable CO production with >47 % FE, while the electrodes rapidly deactivate in the absence of EDTA. This work highlights the use of TiO2 overlayers for enhancing the CO : H2 ratio while simultaneously protecting electrocatalysts from impurities likely to be present in “open” carbon capture systems.

Funder

Shell Exploration and Production Company

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3