Controlling the Orientation‐Dependent Second Harmonic Generation in Hybrid Germanium Perovskites

Author:

Guo Zhu1,Han Dingchong2,Liu Huan3,Hu Yaoqiao4,Zhang Weixiong2,Chen Rui3,Mao Lingling1ORCID

Affiliation:

1. Department of Chemistry Southern University of Science and Technology Shenzhen, Guangdong 518055 China

2. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou, Guangdong 510275 China

3. Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen, Guangdong 518055 China

4. Department of Materials Science and Engineering The University of Texas at Dallas Richardson, Texas 75080 USA

Abstract

AbstractManipulating the crystal orientation plays a crucial role in the conversion efficiency during second harmonic generation (SHG). Here, we provide a new strategy in controlling the surface‐dependent anisotropic SHG with the precise design of (101) and (2 0) MAGeI3 facets. Based on the SHG measurement, the (101) MAGeI3 single crystal exhibits larger SHG (1.3×(2 0) MAGeI3). Kelvin probe force microscopy imaging shows a smaller work function for the (101) MAGeI3 compared with the (2 0), which indirectly demonstrates the stronger intrinsic polarization on the (101) surface. X‐ray photoelectron spectroscopy confirms the band bending within the (101) facet. Temperature‐dependent steady‐state and time‐resolved photoluminescence spectroscopy show shorter lifetime and wider emission band in the (101) MAGeI3 single crystal, revealing the higher defect states. Additionally, powder X‐ray diffraction patterns show the (101) MAGeI3 possesses larger in‐plane polar units [GeI3] density, which could directly enhance the spontaneous polarization in the (101) facet. Density functional theory (DFT) calculation further demonstrates the higher intrinsic polarization in the (101) facet compared with the (2 0) facet, and the larger built‐in electric field in the (101) facet facilitates surface vacancy defect accumulation. Our work provides a new angle in tuning and optimizing hybrid perovskite‐based nonlinear optical materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3