Phase Engineering of High‐Entropy Alloy for Enhanced Electrocatalytic Nitrate Reduction to Ammonia

Author:

Zhang Rong1,Zhang Yaqin1,Xiao Bo1,Zhang Shaoce1,Wang Yanbo1,Cui Huilin1,Li Chuan1,Hou Yue1,Guo Ying2,Yang Tao1,Fan Jun1,Zhi Chunyi1345ORCID

Affiliation:

1. Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue, Kowloon Hong Kong 999077 China

2. College of Materials Science and Engineering Shenzhen University Shenzhen, Guangdong 518055 China

3. Centre for Functional Photonics City University of Hong Kong, Kowloon Hong Kong 999077 China

4. Hong Kong Institute for Advanced Study City University of Hong Kong, Kowloon Hong Kong 999077 China

5. Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE) Shatin, NT, HKSAR 999077 China

Abstract

AbstractDirectly electrochemical conversion of nitrate (NO3) is an efficient and environmentally friendly technology for ammonia (NH3) production but is challenged by highly selective electrocatalysts. High‐entropy alloys (HEAs) with unique properties are attractive materials in catalysis, particularly for multi‐step reactions. Herein, we first reported the application of HEA (FeCoNiAlTi) for electrocatalytic NO3 reduction to NH3 (NRA). The bulk HEA is active for NRA but limited by the unsatisfied NH3 yield of 0.36 mg h−1 cm−2 and Faradaic efficiency (FE) of 82.66 %. Through an effective phase engineering strategy, uniform intermetallic nanoparticles are introduced on the bulk HEA to increase electrochemical active surface area and charge transfer efficiency. The resulting nanostructured HEA (n‐HEA) delivers enhanced electrochemical NRA performance in terms of NH3 yield (0.52 mg h−1 cm−2) and FE (95.23 %). Further experimental and theoretical investigations reveal that the multi‐active sites (Fe, Co, and Ni) dominated electrocatalysis for NRA over the n‐HEA. Notably, the typical Co sites exhibit the lowest energy barrier for NRA with *NH2 to *NH3as the rate‐determining step.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3