Tip‐like Fe−N4 Sites Induced Surface Microenvironments Regulation Boosts the Oxygen Reduction Reaction

Author:

Zhu Yanwei12,Jiang Yimin1,Li HuangJingWei34,Zhang Dongcai12,Tao Li1,Fu Xian‐Zhu2,Liu Min34,Wang Shuangyin1ORCID

Affiliation:

1. Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China

2. College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China

3. School of Physics, State Key Laboratory of Powder Metallurgy Hunan Joint International Research Center for Carbon Dioxide Resource Utilization Changsha 410083 China

4. Central South University Changsha 410083 P. R. China

Abstract

AbstractSingle atom catalysts with defined local structures and favorable surface microenvironments are significant for overcoming slow kinetics and accelerating O2 electroreduction. Here, enriched tip‐like FeN4 sites (T−Fe SAC) on spherical carbon surfaces were developed to investigate the change in surface microenvironments and catalysis behavior. Finite element method (FEM) simulations, together with experiments, indicate the strong local electric field of the tip‐like FeN4 and the more denser interfacial water layer, thereby enhancing the kinetics of the proton‐coupled electron transfer process. In situ spectroelectrochemical studies and the density functional theory (DFT) calculation results indicate the pathway transition on the tip‐like FeN4 sites, promoting the dissociation of O−O bond via side‐on adsorption model. The adsorbed OH* can be facilely released on the curved surface and accelerate the oxygen reduction reaction (ORR) kinetics. The obtained T−Fe SAC nanoreactor exhibits excellent ORR activities (E1/2=0.91 V vs. RHE) and remarkable stability, exceeding those of flat FeN4 and Pt/C. This work clarified the in‐depth insights into the origin of catalytic activity of tip‐like FeN4 sites and held great promise in industrial catalysis, electrochemical energy storage, and many other fields.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3