Affiliation:
1. State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology No.92 West-Da Zhi Street Harbin 150001 China
Abstract
AbstractThe interfacial instability of high‐nickel layered oxides severely plagues practical application of high‐energy quasi‐solid‐state lithium metal batteries (LMBs). Herein, a uniform and highly oxidation‐resistant polymer layer within inner Helmholtz plane is engineered by in situ polymerizing 1‐vinyl‐3‐ethylimidazolium (VEIM) cations preferentially adsorbed on LiNi0.83Co0.11Mn0.06O2 (NCM83) surface, inducing the formation of anion‐derived cathode electrolyte interphase with fast interfacial kinetics. Meanwhile, the copolymerization of [VEIM][BF4] and vinyl ethylene carbonate (VEC) endows P(VEC‐IL) copolymer with the positively‐charged imidazolium moieties, providing positive electric fields to facilitate Li+ transport and desolvation process. Consequently, the Li||NCM83 cells with a cut‐off voltage up to 4.5 V exhibit excellent reversible capacity of 130 mAh g−1 after 1000 cycles at 25 °C and considerable discharge capacity of 134 mAh g−1 without capacity decay after 100 cycles at −20 °C. This work provides deep understanding on tailoring electric double layer by cation specific adsorption for high‐voltage quasi‐solid‐state LMBs.