Affiliation:
1. Department of Chemistry University of Iowa Chemistry Building W374 Iowa City IA 52242 United States
2. Chemistry Division Los Alamos National Laboratory Los Alamos New Mexico 87545 United States
Abstract
AbstractU(VI) peroxide phases (studtite and meta‐studtite) are found throughout the nuclear fuel cycle and exist as corrosion products in high radiation fields. Peroxides are part of a family of reactive oxygen species (ROS) that include hydroperoxyl and superoxide species and are produced during alpha radiolysis of water. While U(VI) peroxides have been thoroughly investigated, the incorporation and stability of ROS species within studtite have not been validated. In the current study, electron paramagnetic resonance (EPR) spectroscopy was used to identify the presence of free radicals within a series of U(VI) peroxide samples containing depleted, highly enriched, and natural uranium. Density functional theory calculations indicated that the predicted EPR signals matched well with a superoxide (O2−⋅) species incorporated into the studtite structure, confirming the presence of ROS in the material. Further analysis of samples that were synthesized between 1945 and 2023 indicated that there is a correlation between the radical signal and the product of specific activity multiplied by age of the sample.
Funder
Basic Energy Sciences
Los Alamos National Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献