Affiliation:
1. Department of Chemistry Virginia Tech Blacksburg VA 24061 USA
2. Department of Materials Science and Engineering Virginia Tech Blacksburg VA 24061 USA
3. Academy of Integrated Science Virginia Tech Blacksburg VA 24061 USA
4. Department of Chemical Engineering and Macromolecules Innovation Institute Virginia Tech Blacksburg VA 24061 USA
Abstract
AbstractPolystyrene (PS) is one of the least recycled large‐volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of “degradation‐upcycling” to synthesize a library of high‐value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value‐added chemicals.
Funder
Directorate for Mathematical and Physical Sciences
Subject
General Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献