Affiliation:
1. MOE Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310058 China
2. State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou 310027 China
3. Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 Zhejiang China
Abstract
AbstractSeeking high‐performance photoresists is an important item for semiconductor industry due to the continuous miniaturization and intelligentization of integrated circuits. Polymer resin containing carbonate group has many desirable properties, such as high transmittance, acid sensitivity and chemical formulation, thus serving as promising photoresist material. In this work, a series of aqueous developable CO2‐sourced polycarbonates (CO2‐PCs) were produced via alternating copolymerization of CO2 and epoxides bearing acid‐cleavable cyclic acetal groups in the presence of tetranuclear organoborane catalyst. The produced CO2‐PCs were investigated as chemical amplification resists in deep ultraviolet (DUV) lithography. Under the catalysis of photogenerated acid, the acetal (ketal) groups in CO2‐PC were hydrolysed into two equivalents of hydroxyl groups, which change the exposed area from hydrophobicity to hydrophilicity, thus enabling the exposed area to be developed with water. Through normalized remaining thickness analysis, the optimal CO2‐derived resist achieved a remarkable sensitivity of 1.9 mJ/cm2, a contrast of 7.9, a favorable resolution (750 nm, half pitch), and a good etch resistance (38 % higher than poly(tert‐butyl acrylate)). Such performances outperform commercial KrF and ArF chemical amplification resists (i.e., polyhydroxystyrene‐derived and polymethacrylate‐based resists), which endows broad application prospects in the field of DUV (KrF and ArF) and extreme ultraviolet (EUV) lithography for nanomanufacturing.
Funder
China National Funds for Distinguished Young Scientists
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献