Asymmetric Cu−N−La Species Enabling Atomic‐Level Donor‐Acceptor Structure and Favored Reaction Thermodynamics for Selective CO2 Photoreduction to CH4

Author:

Xie Wenke1,Liu Yushen2,Zhang Xing3,Yan Huijuan3,Liu Xuan‐He1ORCID,Zhang Xiaoyu3,Zhao Qinglan2ORCID,Huang Hongwei4ORCID

Affiliation:

1. School of Science China University of Geosciences (Beijing) Beijing 100083 China

2. Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China

3. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institution of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China

4. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences (Beijing) Beijing 100083 China

Abstract

AbstractPhotocatalytic CO2 reduction into ideal hydrocarbon fuels, such as CH4, is a sluggish kinetic process involving adsorption of multiple intermediates and multi‐electron steps. Achieving high CH4 activity and selectivity therefore remains a great challenge, which largely depends on the efficiency of photogenerated charge separation and transfer as well as the intermediate energy levels in CO2 reduction. Herein, we construct La and Cu dual‐atom anchored carbon nitride (LaCu/CN), with La‐N4 and Cu‐N3 coordination bonds connected by Cu−N−La bridges. The asymmetric Cu−N−La species enables the establishment of an atomic‐level donor‐acceptor structure, which allows the migration of electrons from La atoms to the reactive Cu atom sites. Simultaneously, intermediates during CO2 reduction on LaCu/CN demonstrate thermodynamically more favorable process for CH4 formation based on theoretical calculations. Eventually, LaCu/CN exhibits a high selectivity (91.6 %) for CH4 formation with a yield of 125.8 μmol g−1, over ten times of that for pristine CN. This work presents a strategy for designing multi‐functional dual‐atom based photocatalysts.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3