Dynamic Evolution of Antisite Defect and Coupling Anionic Redox in High‐Voltage Ultrahigh‐Ni Cathode

Author:

Wu Kang123,Ran Peilin12,Yin Wen45,He Lunhua124,Wang Baotian45,Wang Fangwei124,Zhao Enyue1ORCID,Zhao Jinkui126

Affiliation:

1. Songshan Lake Materials Laboratory Dongguan 523808 China

2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences Beijing 100190 China

3. College of Chemical Engineering and Safety Shandong university of aeronautics Binzhou, Shandong 256600 China

4. Spallation Neutron Source Science Center Dongguan 523803, Guangdong China

5. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

6. School of Physical Sciences Great Bay University Dongguan 523808 China

Abstract

AbstractHigh‐voltage ultrahigh‐Ni cathodes (LiNixCoyMn1−x−yO2, x≥0.9) can significantly enhance the energy density and cost‐effectiveness of Li‐ion batteries beyond current levels. However, severe Li−Ni antisite defects and their undetermined dynamic evolutions during high‐voltage cycling limit the further development of these ultrahigh‐Ni cathodes. In this study, we quantify the dynamic evolutions of the Li−Ni antisite defect using operando neutron diffraction and reveal its coupling relationship with anionic redox, another critical challenge restricting ultrahigh‐Ni cathodes. We detect a clear Ni migration coupled with an unstable oxygen lattice, which accompanies the oxidation of oxygen anions at high voltages. Based on these findings, we propose that minimized Li−Ni antisite defects and controlled Ni migrations are essential for achieving stable high‐voltage cycling structures in ultrahigh‐Ni cathodes. This is further demonstrated by the optimized ultrahigh‐Ni cathode, where reduced dynamic evolutions of the Li−Ni antisite defect effectively inhibit the anionic redox, enhancing the 4.5 V cycling stability.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3